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BARCODE-LAYOUT Problem

Objective: Minimize situations, in which only one of two
adjacent barcodes is illuminated.

similarity measured by synthesis distance
cost = sum of distances between neighboring barcodes

Task:
Select barcodes from a large set of candidates
Assign barcodes to locations
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Border Length Minimization Problem
Discussed by Hannenhalli et al. 2002, Kahng et al. 2004 and Carvalho Jr. and
Rahmann 2008
Main difference: no selection of probes
Application: diagnostics

Quadratic Assignment Problem
Assign n facilities to n locations minimizing a distance-dependent cost function
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Layout Generating

Greedy Algorithms
Iteratively fill positions by choosing the best remaining
candidate

Previously used with limited lookahead (Kahng et al.
2004)
GPU parallelization ⇒ all remaining barcodes can be
searched
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Local search (2-OPT)
Swap barcodes if it improves layout cost
Stop when local minimum is reached
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Genetic Algorithm (GA)
Population of 1024 layouts
Simulates natural evolution
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1 Bound from Kahng et al. 2004 (modified):
Each barcode selects 8 closest neighbors
Discard surplus of neighborhood relationships

2 LP relaxation of Integer Linear Programming
formulation

3 Gilmore Lawler Bound
4 Bound based on b-matching
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768× 1024 array
768, 432 barcodes
Gain: improvement over a
random layout
Gap: optimality gap to the
lower bound

Algorithm Gain (%) Gap (%)

Greedy (lookahead) 29.90 49.60
Greedy (unlimited) 37.16 34.16
Random + 2-OPT 28.56 52.51
Greedy + 2-OPT 37.18 34.12
Random + GA 20.13 70.50
Greedy + GA 35.70 37.31
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Appendix
Lower Bounds
Expected Cost of a Random Layout
Experiments

Lower Bounds

LP relaxation
Lawler’s linearization(Lawler 1963)
O(wh|B|2) variables
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ILP formulation

min 2 ·

(
w∑

x=1

h∑
y=1

∑
b∈B

∑
b′∈B,b′ 6=b

∑
(x′,y′)∈N(x,y)

y(xyb),(x′y′b′) · d(b, b′)

s. t.
w∑

x=1

h∑
y=1

xxyb = 1 ∀b ∈ B∑
b∈B

xxyb = 1 ∀x ∈ {1, ...,w}, ∀y ∈ {1, ..., h}

xxybxx′y′b′ − 2 · y(xyb)(x′y′b′) ≥ 0 ∀b 6= b′ ∈ B, (x ′, y ′) ∈ N(x , y)
w∑

x=1

h∑
y=1

∑
b∈B

∑
(x′,y′)∈N(x,y)

∑
b′∈B,b 6=b′

y(xyb),(x′y′b′) = m m edge count in a grid

xxyb ∈ {0, 1}, y(xyb),(x′y′b′) ∈ {0, 1} ∀1 ≤ x ≤ w , 1 ≤ y ≤ h, b 6= b′ ∈ B,

(x ′y ,′ ) ∈ N(x , y)
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Expected Cost of a Random Layout
Experiments

Gilmore Lawler Bound

Gilmore Lawler Bound
For each barcode, choose the best 3, 5, and 8 neighbors (parallelized computation)
For each barcode, decide if it is best to be placed in a corner, border or middle
position (ILP)
Take into account the required corner, border and middle positions
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Gilmore Lawler Bound: ILP Formulation

min 2 ·
∑

b∈B

(
lb,3nb · xb,3nb + lb,5nb · xb,5nb + lb,8nb · xb,8nb

)
s. t.

∑
b∈B

xb,3nb = 4∑
b∈B

xb,5nb = 2 · (dimX − 2) + 2 · (dimY − 2)∑
b∈B

xb,8nb = (dimX − 2) · (dimY − 2)

xb,3nb + xb,5nb + xb,8nb = 1 b ∈ B
xb,3nb , xb,5nb , xb,8nb ∈ {0, 1}, b ∈ B
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Appendix
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b-matching bound

b-matching bound
Consider a complete undirected graph over the barcode set
Choose the required number of edges such that each node has degree 3 ≤ deg ≤ 8
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b-matching bound (ILP Formulation)

min 2 ·
∑
b∈B

∑
c 6=b∈B

dsynth(b, c) · xbc

s. t.
∑
b∈B

∑
c 6=b∈B

xbc = m

∑
c 6=b∈B

xbc ≤ 8 b ∈ B

∑
c 6=b∈B

xbc ≥ 3 b ∈ B

xb,c ∈ {0, 1}, b 6= c ∈ B
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Experiment for lower bounds

Table: Lower bounds for different array sizes and barcode sets of size w · h. Entries with NA
stand for instances which we could not solve within reasonable time and memory.

method 10× 10 15× 15 20× 20 100× 100 1024× 768

LP 13,216 30,120 NA NA NA
GLB 21,344 48,202 84,988 1,881,900 119,211,464
Kahng 20,964 47,744 84,376 1,884,112 119,215,966
b-matching 21,032 47,852 84,676 1,884,904 NA
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Experiments

Calculation of expected cost of a random layout

Expected Layout Cost
Calculate the expected synthesis distance E(dsynth) between two barcodes
sampled uniformly at randomly from B
Expected layout cost for w × h-array E(cost) = 2m · E(dsynth) with
m := 2 · (w − 1) · (h − 1) + w · (h − 1) + (w − 1) · h

Computed Layout Cost
For set B with |B| = 768 · 1024 and a 1024× 768 array
E(cost) = 254, 498, 050

Empirically: 254, 485, 241.6 with a standard deviation of 14, 378.1
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Performance of 2-OPT
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Objective value for different barcode set sizes
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Figure: Average local cost of every column
in the layout for each barcode set size used.
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